Hierarchical Classifier Design for Airborne SAR Images of Ships

نویسندگان

  • L. Gagnon
  • R. Klepko
چکیده

We report about a hierarchical design for extracting ship features and recognizing ships from SAR images, and which will eventually feed a multisensor data fusion system for airborne surveillance. The target is segmented from the image background using directional thresholding and region merging processes. Ship end-points are then identified through a ship centerline detection performed with a Hough transform. A ship length estimate is calculated assuming that the ship heading and/or the cross-range resolution are known. A high-level ship classification identifies whether the target belongs to Line (mainly combatant military ships) or Merchant ship categories. Category discrimination is based on the radar scatterers' distribution in 9 ship sections along the ship’s range profile. A 3-layer neural network has been trained on simulated scatterers distributions and supervised by a rule-based expert system to perform this task. The NN “smoothes out” the rules and the confidence levels on the category declaration. Line ship type (Frigate, Destroyer, Cruiser, Battleship, Aircraft Carrier) is then estimated using a Bayes classifier based on the ship length. Classifier performances using simulated images are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airborne Fusion of Imaging and Non-imaging Sensor Information for Maritime Surveillance

This paper presents results from an Adaptable Data Fusion Testbed (ADFT) which has been constructed to analyze simulated or real data with the help of modular algorithms for each of the main fusion functions and image interpretation algorithms. The results obtained from data fusion of information coming from an imaging Synthetic Aperture Radar (SAR) and non-imaging sensors (ESM, IFF, 2-D radar)...

متن کامل

The Extended Sub-look Analysis In Polarimetric SAR Data For Ship Detection

The monitoring of maritime areas with remote sensing is essential for security reasons and also for the conservation of environment. The synthetic aperture radar (SAR) can play an important role in this matter by considering the possibility of acquiring high-resolution images at nighttime and under cloud cover. Recently, the new approaches based on the sub-look analysis for preserving the infor...

متن کامل

Removal of azimuth ambiguities and detection of a ship: using polarimetric airborne C-band SAR images

Synthetic aperture radar (SAR) imagery from the sea can contain ships and their ambiguities. The ambiguities are visually identifiable due to their high intensities in the low radar backscatter background of sea environments and can be mistaken as ships, resulting in false alarms in ship detection. Analysing polarimetric characteristics of ships and ambiguities, we found that (a) backscattering...

متن کامل

A Hierarchical Classification Method for Breast Tumor Detection

Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...

متن کامل

Vessel Classification in Cosmo-skymed Sar Data Using Hierarchical Feature Selection

SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and tex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998